# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (2E,6E)-2,6-Bis(3-bromo-4-hydroxy-5methoxybenzylidene)cyclohexanone

## Zhi-Yun Du,\* Bao-Hua Huang, Kun Zhang and Yan-Xiong Fang

Faculty of Light Industrial and Chemical Engineering, Guangdong University of Technology, Guangzhou 510090, People's Republic of China Correspondence e-mail: zhiyundu@yahoo.com.cn

Received 25 May 2007; accepted 5 June 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.110; data-to-parameter ratio = 16.3.

In the title compound,  $C_{22}H_{20}Br_2O_5$ , the dihedral angle between the two benzene rings is  $12.0 (3)^\circ$ . The cyclohexanone ring has an envelope conformation with the flap atom displaced by 0.675 (6) Å from the plane of the other five atoms. The crystal structure has intra- and intermolecular hydrogen bonds between the hydroxy and methoxy groups.

#### **Related literature**

For related literature, see: Du, Bao et al. (2006); Du, Liu et al. (2006); Sardjiman et al. (1997); Youssef et al. (2004).



### **Experimental**

#### Crystal data

| $C_{22}H_{20}Br_2O_5$          |
|--------------------------------|
| $M_r = 524.20$                 |
| Monoclinic, $P2_1/c$           |
| a = 7.5550 (11)  Å             |
| <i>b</i> = 14.938 (2) Å        |
| c = 17.763 (3) Å               |
| $\beta = 95.201 \ (3)^{\circ}$ |

V = 1996.4 (5) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 4.09 \text{ mm}^{-1}$ T = 173 (2) K  $0.32 \times 0.12 \times 0.10 \text{ mm}$ 

#### Data collection

```
Bruker SMART 1000 CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.354, T_{\rm max} = 0.685
```

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.045$ | 266 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.110$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4349 reflections                | $\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$ |

10131 measured reflections

 $R_{\rm int} = 0.052$ 

4349 independent reflections

2760 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                    | D-H                          | $H \cdot \cdot \cdot A$      | $D \cdots A$                                     | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------|--------------------------------------|
| $D1 - H1 \cdots O2$<br>$D5 - H5A \cdots O1^{i}$<br>$D1 - H1 \cdots O4^{ii}$<br>$D5 - H5A \cdots O4$ | 0.84<br>0.84<br>0.84<br>0.84 | 2.15<br>1.98<br>2.30<br>2.27 | 2.613 (5)<br>2.796 (5)<br>2.809 (4)<br>2.706 (5) | 115<br>163<br>120<br>113             |
|                                                                                                     |                              |                              |                                                  |                                      |

Symmetry codes: (i) x, y, z + 1; (ii) x, y, z - 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work is supported by Guanggong Provincial Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2146).

#### References

Bruker (1999). SMART (Version 5.054), SAINT-Plus (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

- Du, Z. Y., Bao, Y. D., Liu, Z., Wei, Q., Ma, L., Huang, Z. S., Gu, L. Q. & Chan, A. S. C. (2006). Arch. Pharm. 339, 123-128.
- Du, Z. Y., Liu, R. R., Shao, W. Y., Mao, X. P., Ma, L., Gu, L. Q., Huang, Z. S. & Chan, A. S. C. (2006). Eur. J. Med. Chem. 41, 213-218.
- Sardjiman, S. S., Reksohadiprodjo, M. S., Hakim, L., Van der Goot, H. & Timmerman, H. (1997). Eur. J. Med. Chem. 32, 625-630.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Youssef, K. M., El-Sherbeny, M. A., El-Shafie, F. S., Farag, H. A., Al-Deeb, O. A. & Awadalla, S. A. A. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 42-54.

Acta Cryst. (2007). E63, o3216 [doi:10.1107/S1600536807027559]

# (2E,6E)-2,6-Bis(3-bromo-4-hydroxy-5-methoxybenzylidene)cyclohexanone

# Z.-Y. Du, B.-H. Huang, K. Zhang and Y.-X. Fang

#### Comment

Curcumin analogs exhibit potential antioxidative properties (Sardjiman *et al.*, 1997, Youssef *et al.*, 2004) and inhibitory activities on  $\alpha$ -glucosidase (Du, Liu *et al.*, 2006) and on aldose reductase (Du, Bao *et al.*, 2006). The title compound, C<sub>22</sub>H<sub>20</sub>Br<sub>2</sub>O<sub>5</sub>, is a synthesized curcumin analog and we report here its crystal structure.

The X-ray crystallographic study of the title compound confirms the previously proposed molecular structure based on spectroscopic data (Fig. 1). The C—C, C=C, C—O and C=O distances show no remarkable features.

A structural feature is the presence of intermolecular O—H···O hydrogen bonds between the hydroxy groups and the methoxy groups O of neighboring molecules (Table 2), resulting in infinite chains along the *c* axis (Fig. 2). Furthermore, there is a short intermolecular contact between the carbonyl O atom and a Br atom; Br2···O3 = 3.051 (3) Å.

#### **Experimental**

The title compound was synthesized as previously described (Du, Liu *et al.*, 2006). A mixture of 3-bromo-4-hydroxy-5methoxybenzaldehyde (0.01 mol) and cyclohexanone (0.005 mol) was dissolved in glacial acetic acid (10 ml) saturated with anhydrous hydrogen chloride and heated in a water bath at 25–30 °C for 2 h. After standing for 2 days, the mixture was treated with cold water and filtered to obtain a yellow solid. Crystals were obtained by recrystallization from acetic acid and water (1:1) The compound identity was confirmed by the <sup>1</sup>H NMR spectra and ESI-MS. <sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 300 MHz)  $\delta$ , 9.94 (br, 2H, –OH), 7.50 (s, 2H, –CH=), 7.27 (2H, aromatic), 7.13 (2H, aromatic), 3.86 (s, 6H, OCH<sub>3</sub>), 2.88 (t, J = 6.7 Hz, 4H, –CH<sub>2</sub>—C—CH<sub>2</sub>–), 1.73 (q, J = 6.7 Hz, 2H, –C—CH<sub>2</sub>—C–). ESI-MS (m/z):523[*M*]<sup>-</sup>.

#### Refinement

All H atoms were positioned geometrically and refined in a riding model, with C—H = 0.98 Å for methyl, C—H = 0.99 Å for methylene,  $Csp^2$ —H = 0.95 Å and O—H = 0.84 Å.  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl and 1.2 for other C;  $U_{iso}(H) = 1.5U_{eq}(O)$ .

**Figures** 



Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.



Fig. 2. The packing of the title compound, viewed down the *a* axis, showing one chain of molecules connected by O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (I)  $x_y$ ,  $y_1 + z$ ].

# (2E,6E)-2,6-Bis(3-bromo-4-hydroxy-5-methoxybenzylidene)cyclohexanone

| Crystal data                   |                                              |
|--------------------------------|----------------------------------------------|
| $C_{22}H_{20}Br_2O_5$          | $F_{000} = 1048$                             |
| $M_r = 524.20$                 | $D_{\rm x} = 1.744 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 2576 reflections        |
| a = 7.5550 (11)  Å             | $\theta = 2.3 - 26.7^{\circ}$                |
| <i>b</i> = 14.938 (2) Å        | $\mu = 4.09 \text{ mm}^{-1}$                 |
| c = 17.763 (3) Å               | T = 173 (2) K                                |
| $\beta = 95.201 \ (3)^{\circ}$ | Needle, colorless                            |
| $V = 1996.4 (5) \text{ Å}^3$   | $0.32 \times 0.12 \times 0.10 \text{ mm}$    |
| Z = 4                          |                                              |
|                                |                                              |

## Data collection

| Bruker SMART 1000 CCD area-detector diffractometer             | 4349 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2760 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.052$                  |
| T = 173(2)  K                                                  | $\theta_{\text{max}} = 27.1^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -9 \rightarrow 9$                 |
| $T_{\min} = 0.354, T_{\max} = 0.685$                           | $k = -19 \rightarrow 11$               |
| 10131 measured reflections                                     | $l = -21 \rightarrow 22$               |

# Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                      |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                        | H-atom parameters constrained                                             |
| $wR(F^2) = 0.110$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0496P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.02                                               | $(\Delta/\sigma)_{\text{max}} = 0.001$                                    |
| 4349 reflections                                       | $\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$                       |
| 266 parameters                                         | $\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$                    |
| Primary atom site location: structure-invariant direct |                                                                           |

Primary atom site location: structure-invariant direct methods Extinction correction: none

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|-------------|--------------|---------------------------|
| Br1  | 0.34530 (7) | 0.66581 (3) | -0.31408 (3) | 0.03229 (16)              |
| Br2  | 0.52599 (7) | 0.71802 (3) | 0.39084 (3)  | 0.02742 (15)              |
| C1   | 0.1939 (6)  | 0.4930 (3)  | -0.3194 (2)  | 0.0212 (10)               |
| C2   | 0.1366 (6)  | 0.4134 (3)  | -0.2891 (2)  | 0.0223 (11)               |
| C3   | 0.1561 (6)  | 0.3987 (3)  | -0.2116 (2)  | 0.0213 (10)               |
| Н3   | 0.1203      | 0.3434      | -0.1915      | 0.026*                    |
| C4   | 0.2296 (6)  | 0.4667 (3)  | -0.1626 (2)  | 0.0190 (10)               |
| C5   | 0.2868 (6)  | 0.5456 (3)  | -0.1942 (2)  | 0.0209 (10)               |
| Н5   | 0.3390      | 0.5915      | -0.1624      | 0.025*                    |
| C6   | 0.2681 (6)  | 0.5576 (3)  | -0.2718 (2)  | 0.0196 (10)               |
| C7   | 0.2418 (6)  | 0.4468 (3)  | -0.0817 (2)  | 0.0203 (10)               |
| H7   | 0.2416      | 0.3849      | -0.0695      | 0.024*                    |
| C8   | 0.2534 (6)  | 0.5023 (3)  | -0.0219 (2)  | 0.0174 (10)               |
| C9   | 0.2528 (6)  | 0.4578 (3)  | 0.0543 (2)   | 0.0219 (10)               |
| C10  | 0.2709 (6)  | 0.5150 (3)  | 0.1238 (2)   | 0.0196 (10)               |
| C11  | 0.2874 (6)  | 0.6152 (3)  | 0.1154 (2)   | 0.0214 (10)               |
| H11A | 0.4147      | 0.6314      | 0.1168       | 0.026*                    |
| H11B | 0.2375      | 0.6451      | 0.1585       | 0.026*                    |
| C12  | 0.1907 (6)  | 0.6488 (3)  | 0.0415 (2)   | 0.0222 (11)               |
| H12A | 0.0618      | 0.6367      | 0.0415       | 0.027*                    |
| H12B | 0.2070      | 0.7143      | 0.0375       | 0.027*                    |
| C13  | 0.2619 (6)  | 0.6028 (3)  | -0.0258 (2)  | 0.0209 (10)               |
| H13A | 0.1927      | 0.6232      | -0.0726      | 0.025*                    |
| H13B | 0.3870      | 0.6211      | -0.0287      | 0.025*                    |
| C14  | 0.2704 (6)  | 0.4718 (3)  | 0.1901 (2)   | 0.0213 (10)               |
| H14  | 0.2517      | 0.4090      | 0.1859       | 0.026*                    |
| C15  | 0.2938 (6)  | 0.5054 (3)  | 0.2679 (2)   | 0.0189 (10)               |
| C16  | 0.2337 (6)  | 0.4519 (3)  | 0.3252 (2)   | 0.0214 (10)               |
| H16  | 0.1781      | 0.3962      | 0.3123       | 0.026*                    |
| C17  | 0.2540 (6)  | 0.4787 (3)  | 0.4005 (2)   | 0.0212 (10)               |
| C18  | 0.3355 (6)  | 0.5595 (3)  | 0.4206 (2)   | 0.0230 (11)               |
| C19  | 0.4016 (6)  | 0.6104 (3)  | 0.3643 (2)   | 0.0205 (10)               |
| C20  | 0.3827 (6)  | 0.5844 (3)  | 0.2892 (2)   | 0.0207 (10)               |

| H20  | 0.4304     | 0.6206     | 0.2520        | 0.025*      |
|------|------------|------------|---------------|-------------|
| C21  | 0.0191 (6) | 0.2687 (3) | -0.3221 (3)   | 0.0253 (11) |
| H21A | 0.1239     | 0.2395     | -0.2965       | 0.038*      |
| H21B | -0.0219    | 0.2347     | -0.3676       | 0.038*      |
| H21C | -0.0757    | 0.2710     | -0.2880       | 0.038*      |
| C22  | 0.1460 (7) | 0.3418 (3) | 0.4464 (3)    | 0.0317 (13) |
| H22A | 0.0396     | 0.3405     | 0.4105        | 0.048*      |
| H22B | 0.1194     | 0.3140     | 0.4940        | 0.048*      |
| H22C | 0.2420     | 0.3086     | 0.4252        | 0.048*      |
| 01   | 0.1786 (5) | 0.5049 (2) | -0.39617 (16) | 0.0311 (8)  |
| H1   | 0.1417     | 0.4573     | -0.4174       | 0.047*      |
| O2   | 0.0631 (5) | 0.3551 (2) | -0.34238 (17) | 0.0318 (8)  |
| O3   | 0.2381 (5) | 0.3768 (2) | 0.05909 (16)  | 0.0324 (9)  |
| O4   | 0.1989 (5) | 0.4304 (2) | 0.45967 (17)  | 0.0320 (8)  |
| 05   | 0.3565 (5) | 0.5901 (2) | 0.49255 (16)  | 0.0345 (9)  |
| H5A  | 0.3062     | 0.5550     | 0.5208        | 0.052*      |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|------------|-------------|-------------|--------------|--------------|--------------|
| Br1 | 0.0472 (4) | 0.0255 (3)  | 0.0249 (3)  | -0.0022 (2)  | 0.0072 (2)   | 0.0048 (2)   |
| Br2 | 0.0337 (3) | 0.0243 (3)  | 0.0237 (3)  | -0.0030 (2)  | -0.0007 (2)  | -0.0040 (2)  |
| C1  | 0.019 (2)  | 0.030 (3)   | 0.014 (2)   | 0.008 (2)    | 0.0015 (18)  | 0.003 (2)    |
| C2  | 0.019 (3)  | 0.026 (3)   | 0.023 (2)   | 0.002 (2)    | 0.003 (2)    | -0.008 (2)   |
| C3  | 0.020 (2)  | 0.023 (3)   | 0.021 (2)   | 0.003 (2)    | 0.0027 (19)  | -0.004 (2)   |
| C4  | 0.016 (2)  | 0.026 (3)   | 0.015 (2)   | 0.006 (2)    | 0.0057 (18)  | -0.0016 (19) |
| C5  | 0.024 (3)  | 0.026 (3)   | 0.012 (2)   | 0.003 (2)    | 0.0013 (18)  | -0.0012 (19) |
| C6  | 0.024 (3)  | 0.015 (2)   | 0.021 (2)   | 0.0020 (19)  | 0.0035 (19)  | 0.0045 (19)  |
| C7  | 0.022 (3)  | 0.020 (2)   | 0.019 (2)   | 0.001 (2)    | 0.0006 (19)  | 0.003 (2)    |
| C8  | 0.017 (2)  | 0.019 (2)   | 0.016 (2)   | 0.0032 (19)  | 0.0024 (18)  | 0.0001 (19)  |
| C9  | 0.026 (3)  | 0.020 (3)   | 0.019 (2)   | 0.004 (2)    | -0.002 (2)   | 0.003 (2)    |
| C10 | 0.024 (3)  | 0.019 (2)   | 0.016 (2)   | 0.001 (2)    | -0.0020 (19) | -0.0012 (19) |
| C11 | 0.030 (3)  | 0.020 (2)   | 0.014 (2)   | 0.002 (2)    | 0.0021 (19)  | -0.0030 (19) |
| C12 | 0.032 (3)  | 0.013 (2)   | 0.022 (2)   | 0.004 (2)    | -0.001 (2)   | 0.0020 (19)  |
| C13 | 0.026 (3)  | 0.020 (2)   | 0.016 (2)   | 0.000 (2)    | -0.0001 (19) | 0.002 (2)    |
| C14 | 0.026 (3)  | 0.019 (2)   | 0.018 (2)   | -0.001 (2)   | 0.001 (2)    | 0.0001 (19)  |
| C15 | 0.024 (3)  | 0.020 (2)   | 0.012 (2)   | 0.004 (2)    | 0.0005 (18)  | 0.0012 (19)  |
| C16 | 0.023 (3)  | 0.019 (2)   | 0.023 (2)   | 0.001 (2)    | 0.002 (2)    | -0.002 (2)   |
| C17 | 0.016 (2)  | 0.026 (3)   | 0.020 (2)   | 0.002 (2)    | -0.0009 (19) | 0.005 (2)    |
| C18 | 0.025 (3)  | 0.031 (3)   | 0.014 (2)   | 0.006 (2)    | 0.0031 (19)  | 0.003 (2)    |
| C19 | 0.019 (2)  | 0.023 (3)   | 0.019 (2)   | 0.005 (2)    | -0.0009 (19) | -0.001 (2)   |
| C20 | 0.021 (3)  | 0.025 (3)   | 0.017 (2)   | 0.001 (2)    | 0.0029 (19)  | 0.001 (2)    |
| C21 | 0.027 (3)  | 0.017 (3)   | 0.033 (3)   | -0.009 (2)   | 0.005 (2)    | -0.014 (2)   |
| C22 | 0.045 (3)  | 0.034 (3)   | 0.015 (2)   | -0.011 (3)   | -0.003 (2)   | 0.010 (2)    |
| 01  | 0.041 (2)  | 0.036 (2)   | 0.0162 (16) | 0.0011 (18)  | 0.0039 (15)  | -0.0011 (15) |
| O2  | 0.043 (2)  | 0.030 (2)   | 0.0216 (17) | -0.0027 (16) | -0.0006 (16) | -0.0059 (15) |
| O3  | 0.064 (3)  | 0.0154 (18) | 0.0175 (16) | 0.0019 (17)  | -0.0005 (16) | 0.0017 (14)  |
| O4  | 0.043 (2)  | 0.034 (2)   | 0.0186 (17) | -0.0100 (17) | 0.0035 (15)  | 0.0032 (15)  |

| 05           | 0.053 (2)        | 0.036 (2) | 0.0152 (17) | -0.0095 (18) | 0.0047 (16) | -0.0047 (15) |
|--------------|------------------|-----------|-------------|--------------|-------------|--------------|
| Geometric pa | vrameters (Å, °) |           |             |              |             |              |
| Br1—C6       |                  | 1,896 (4) | C12—        | -H12B        | 0.99        | 000          |
| Br2—C19      |                  | 1.899 (5) | C13-        | -H13A        | 0.99        | 00           |
| C1—C6        |                  | 1.369 (6) | C13—        | -H13B        | 0.99        | 000          |
| C101         |                  | 1.369 (5) | C14—        | -C15         | 1.46        | 5 (6)        |
| C1—C2        |                  | 1.390 (6) | C14—        | -H14         | 0.95        | 00           |
| C2—O2        |                  | 1.365 (5) | C15—        | -C20         | 1.39        | 93 (6)       |
| C2—C3        |                  | 1.390 (6) | C15—        | -C16         | 1.40        | 01 (6)       |
| C3—C4        |                  | 1.417 (6) | C16-        | -C17         | 1.39        | 2 (6)        |
| С3—Н3        |                  | 0.9500    | C16-        | -H16         | 0.95        | 00           |
| C4—C5        |                  | 1.391 (6) | C17—        | -04          | 1.37        | 0 (5)        |
| C4—C7        |                  | 1.462 (6) | C17—        | -C18         | 1.38        | 7 (6)        |
| C5—C6        |                  | 1.385 (6) | C18—        | -05          | 1.35        | 3 (5)        |
| С5—Н5        |                  | 0.9500    | C18—        | -C19         | 1.38        | 5 (6)        |
| С7—С8        |                  | 1.344 (6) | C19–        | -C20         | 1.38        | 5 (6)        |
| С7—Н7        |                  | 0.9500    | C20—        | -H20         | 0.95        | 00           |
| C8—C13       |                  | 1.505 (6) | C21-        | -02          | 1.38        | 8 (5)        |
| С8—С9        |                  | 1.508 (6) | C21-        | -H21A        | 0.98        | 00           |
| С9—ОЗ        |                  | 1.219 (5) | C21-        | -H21B        | 0.98        | 00           |
| C9—C10       |                  | 1.498 (6) | C21–        | -H21C        | 0.98        | 00           |
| C10-C14      |                  | 1.343 (6) | C22—        | -04          | 1.39        | 7 (5)        |
| C10-C11      |                  | 1.511 (6) | C22—        | -H22A        | 0.98        | 00           |
| C11—C12      |                  | 1.527 (6) | C22—        | -H22B        | 0.98        | 00           |
| C11—H11A     |                  | 0.9900    | C22—        | -H22C        | 0.98        | 00           |
| C11—H11B     |                  | 0.9900    | 01—1        | H1           | 0.84        | 00           |
| C12—C13      |                  | 1.520 (6) | 05—1        | H5A          | 0.84        | 00           |
| C12—H12A     |                  | 0.9900    |             |              |             |              |
| C6-C1-O1     |                  | 121.1 (4) | C8—0        | C13—H13A     | 108.        | .9           |
| C6-C1-C2     |                  | 119.2 (4) | C12-        | -C13—H13A    | 108.        | .9           |
| O1—C1—C2     |                  | 119.6 (4) | C8—4        | С13—Н13В     | 108.        | .9           |
| O2—C2—C3     |                  | 125.9 (4) | C12-        | -C13—H13B    | 108.        | .9           |
| O2—C2—C1     |                  | 113.5 (4) | H13A        | —С13—Н13В    | 107.        | .7           |
| C3—C2—C1     |                  | 120.6 (4) | C10–        | -C14C15      | 130.        | .8 (4)       |
| C2—C3—C4     |                  | 119.8 (4) | C10–        | -C14—H14     | 114.        | .6           |
| С2—С3—Н3     |                  | 120.1     | C15—        | -C14—H14     | 114.        | .6           |
| С4—С3—Н3     |                  | 120.1     | C20—        | -C15C16      | 117.        | .8 (4)       |
| C5—C4—C3     |                  | 118.6 (4) | C20—        | -C15C14      | 124.        | .1 (4)       |
| C5—C4—C7     |                  | 125.1 (4) | C16—        | -C15C14      | 118.        | 0 (4)        |
| C3—C4—C7     |                  | 116.4 (4) | C17—        | -C16C15      | 121.        | .3 (4)       |
| C6—C5—C4     |                  | 120.3 (4) | C17—        | -C16—H16     | 119.        | 4            |
| С6—С5—Н5     |                  | 119.9     | C15—        | -C16—H16     | 119.        | 4            |
| C4—C5—H5     |                  | 119.9     | O4—0        | C17—C18      | 114.        | 8 (4)        |
| C1—C6—C5     |                  | 121.5 (4) | O4—0        | C17—C16      | 124.        | .8 (4)       |
| C1—C6—Br1    |                  | 118.7 (3) | C18—        | -C17—C16     | 120.        | 4 (4)        |
| C5—C6—Br1    |                  | 119.8 (3) | 05—0        | C18—C19      | 118.        | 5 (4)        |
| C8—C7—C4     |                  | 130.2 (4) | 05—         | C18—C17      | 123.        | .3 (4)       |

| C8 C7 H7                                             | 11/ 0                | C10 C18 C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.3(4)             |
|------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C4—C7—H7                                             | 114.9                | $C_{19} = C_{19} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1219(4)              |
| C7 - C8 - C13                                        | 125 4 (4)            | $C_{18} - C_{19} - Br^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.9(1)<br>119.3(3) |
| C7 - C8 - C9                                         | 115.6 (4)            | $C_{10} = C_{10} = B_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5(3)<br>118.8(3) |
| $C_{13}^{13} - C_{8}^{8} - C_{9}^{9}$                | 119.0 (4)            | $C_{20} = C_{10} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3(4)             |
| 03 - 09 - 010                                        | 119.0(4)<br>120.7(4) | $C_{19} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.8                |
| 03 - 09 - 08                                         | 120.7(4)             | $C_{15} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8                |
| $C_{10} - C_{9} - C_{8}$                             | 120.0(1)<br>1187(4)  | 02-021-H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| $C_{14} - C_{10} - C_{9}$                            | 116.7 (4)            | O2 = C21 = H21R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| $C_{14} = C_{10} = C_{11}$                           | 124.7(4)             | $H_{21}^{-1} = C_{21}^{-1} = H_{21}^{-1} B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| $C_{1}^{0} = C_{1}^{1} = C_{1}^{1}$                  | 124.7(4)<br>1191(4)  | 02-021-H210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| $C_{10}$ $C_{11}$ $C_{12}$                           | 111.0 (3)            | $H_{21}^{-1} = H_{21}^{-1} = $ | 109.5                |
| C10-C11-H11A                                         | 100.2                | $H_{21R} = C_{21} = H_{21C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| $C_{10}$ $C_{11}$ $H_{11A}$                          | 109.2                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                |
| C10 C11 H11B                                         | 109.2                | 04 - 022 - H22R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| C12 C11 H11B                                         | 109.2                | H22A C22 H22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
|                                                      | 107.2                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.9                | $H_{22}$ $H$ | 109.5                |
| $C_{12} = C_{12} = C_{11}$                           | 110.5 (4)            | H22A - C22 - H22C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                |
| C13-C12-H12A                                         | 109.5                | $\mathbf{H}_{22}\mathbf{B}_{-}\mathbf{C}_{22}-\mathbf{H}_{22}\mathbf{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                |
| C12_C12_H12A                                         | 109.5                | C1 = O1 = H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C13-C12-H12B                                         | 109.5                | $C_2 = 0_2 = C_2 I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.5 (4)            |
| CII—CI2—HI2B                                         | 109.5                | C17 - 04 - C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.1 (4)            |
| H12A - C12 - H12B                                    | 108.1                | C18—05—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                |
| C8-C13-C12                                           | 113.3 (4)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| C6—C1—C2—O2                                          | 179.2 (4)            | C9—C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.9 (6)             |
| O1—C1—C2—O2                                          | -2.1 (6)             | C10-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -57.8 (5)            |
| C6—C1—C2—C3                                          | -0.8 (7)             | C7—C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 153.4 (4)            |
| O1—C1—C2—C3                                          | 177.9 (4)            | C9—C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -24.9 (6)            |
| O2—C2—C3—C4                                          | -177.8 (4)           | C11—C12—C13—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.5 (5)             |
| C1—C2—C3—C4                                          | 2.1 (7)              | C9—C10—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176.6 (5)            |
| C2—C3—C4—C5                                          | -2.4 (6)             | C11—C10—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.7 (8)             |
| C2—C3—C4—C7                                          | 178.6 (4)            | C10-C14-C15-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -23.8 (8)            |
| C3—C4—C5—C6                                          | 1.4 (7)              | C10-C14-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160.6 (5)            |
| C7—C4—C5—C6                                          | -179.8 (4)           | C20-C15-C16-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1 (7)              |
| O1—C1—C6—C5                                          | -178.9 (4)           | C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.0 (4)            |
| C2—C1—C6—C5                                          | -0.3 (7)             | C15—C16—C17—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180.0 (4)            |
| O1—C1—C6—Br1                                         | 1.4 (6)              | C15—C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3 (7)             |
| C2—C1—C6—Br1                                         | -179.9 (3)           | O4—C17—C18—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.5 (7)             |
| C4—C5—C6—C1                                          | -0.1 (7)             | C16—C17—C18—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178.8 (4)            |
| C4—C5—C6—Br1                                         | 179.6 (3)            | O4—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177.3 (4)            |
| C5—C4—C7—C8                                          | 23.3 (8)             | C16—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.4 (7)             |
| C3—C4—C7—C8                                          | -157.9 (5)           | O5-C18-C19-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -178.8 (4)           |
| C4—C7—C8—C13                                         | -2.0 (8)             | C17—C18—C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3 (7)              |
| C4—C7—C8—C9                                          | 176.4 (5)            | O5—C18—C19—Br2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4 (6)              |
| C7—C8—C9—O3                                          | -1.7 (7)             | C17—C18—C19—Br2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -176.4 (3)           |
| C13—C8—C9—O3                                         | 176.8 (4)            | C18—C19—C20—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6 (7)              |
| C7—C8—C9—C10                                         | 178.1 (4)            | Br2-C19-C20-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.3 (3)            |
| C13—C8—C9—C10                                        | -3.3 (6)             | C16—C15—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.2 (6)             |
| O3—C9—C10—C14                                        | 0.2 (7)              | C14—C15—C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -178.8 (4)           |

| C8_C9_C10_C14                           | -1797(4)   | $C_{3}$ $C_{2}$ $C_{2}$ $C_{2}$ $C_{2}$ |              | -7.8(7)    |
|-----------------------------------------|------------|-----------------------------------------|--------------|------------|
|                                         | 179.7 (4)  |                                         |              | 7.0(7)     |
| O3—C9—C10—C11                           | -179.6 (4) | C1—C2—O2—C21                            |              | 172.3 (4)  |
| C8—C9—C10—C11                           | 0.6 (6)    | C18—C17—O4—C22                          |              | -168.4 (4) |
| C14—C10—C11—C12                         | -149.8 (5) | C16—C17—O4—C22                          |              | 11.4 (7)   |
|                                         |            |                                         |              |            |
| Hydrogen-bond geometry (Å, °)           |            |                                         |              |            |
| D—H···A                                 | D—H        | I H···A                                 | $D \cdots A$ | D—H···A    |
| O1—H1…O2                                | 0.84       | 2.15                                    | 2.613 (5)    | 115        |
| O5—H5A···O1 <sup>i</sup>                | 0.84       | 1.98                                    | 2.796 (5)    | 163        |
| O1—H1···O4 <sup>ii</sup>                | 0.84       | 2.30                                    | 2.809 (4)    | 120        |
| O5—H5A…O4                               | 0.84       | 2.27                                    | 2.706 (5)    | 113        |
| 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + | 1          |                                         |              |            |

Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.







Fig. 2